Multiple moving person tracking by UWB sensors: the effect of mutual shielding persons and methods reducing its impacts
نویسندگان
چکیده
Ultra-wideband (UWB) radars are sensors allowing to track people in critical environments and situations. The results reached by single UWB sensors for such applications have shown that they are able to detect and track a person very well in a single person scenario. However, in multiple moving person scenarios, the ability of a single UWB sensor to detect several persons is usually significantly reduced. This is caused by a mutual shielding among people. In this paper, we will deal with the mutual shielding effect and its impacts, as well as with the methods of improving multiple moving person tracking by UWB radars. Firstly, we will provide a comprehensive description of the mutual shielding effect. Then, based on its analyses, we will state three complementary approaches created by the authors of this paper to reduce its impacts. They include an enhancement of the low-level echo of the targets, radar antenna array positioning at a convenient height, UWB sensor network application and, finally, their mutual combinations. The properties of those approaches will be demonstrated by two experimental measurements aimed at through wall tracking of two and three people, respectively. The results obtained in the experiments will illustrate the mutual shielding effect and the potential of the methods we have proposed to reduce its impacts.
منابع مشابه
A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملUWB Radar Signal Processing for Localization of Persons with the Changing Nature of Their Movement
In the last decade, it has been shown that short-range ultra-wide band radars (sensors) can provide the efficient solution for human being localization for line-of-sight and non-line-of-sight scenarios. To localize people correctly using this technology, the corresponding detection and localization methods have to be selected according to the nature of person motion state. In this respect, two ...
متن کاملLocation Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact siz...
متن کاملNew UWB Shielding with Frequency Selective Surfaces
In this paper a Frequency Selective Surface (FSS) as a UWB electromagnetic shield is introduced. The proposed FSS comprises a quasi-J.C-Jerusalem Cross- and a copper ring, which are located at both sides of a FR4 substrate and can represent a S.E -Shielding Effectiveness- better than 20dB in 90% bandwidth of Ultra Wide Band frequency. This structure is compact and thin. Each cell comprises J.C ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017